A Simple Rank Test to Distinguish Extreme Pathways from Elementary Modes in Metabolic Networks

نویسندگان

  • Dimitrije Jevremovic
  • Cong T. Trinh
  • Friedrich Srienc
  • Daniel Boley
چکیده

Background: Metabolic pathway analysis is a powerful tool to study the metabolic structure of a cellular metabolism that comprises an intricate network for transforming metabolites through enzyme-catalyzed reactions. The approach is based on convex analysis to solve a homogeneous system of linear equations and inequality constraints derived from the steady state operation of mass conservation of metabolites. The solutions constitute the admissible flux space known as the convex polyhedral cone. Elementary Mode and Extreme Pathway Analysis are two closely related techniques that have been developed to identify pathways spanning the admissible flux space. Both elementary modes and extreme pathways are genetically independent pathways that can support steady state operation of cellular metabolism. However, the set of extreme pathways is often a subset of elementary modes, and under certain conditions only extreme pathways are the generating edges of the polyhedral cone. Because the two techniques are closely related, it is important to develop a theoretical framework to distinguish extreme pathways from elementary modes. Results: We have found a simple algebraic test to distinguish extreme pathways from elementary modes which requires only the stoichiometry matrix. The method has been tested with published metabolic networks that have been characterized with Elementary Mode Analysis and Extreme Pathway Analysis. The identity and number of elementary modes are not altered in networks subjected to splitting every reversible reaction into two different irreversible reactions, other than the spurious futile cycles involving the new reactions themselves. However, the set of extreme pathways depends strongly on the specific treatment of the reversible reactions of the network. The application of this algebraic test for efficient computation of elementary modes in very large networks is discussed. Conclusions: Elementary modes are the complete set of genetically independent pathways of a cellular metabolism that supports steady state operation. With the simple algebraic test, we can easily identify whether a given pathway is an elementary mode or an extreme pathway before computing the complete set of pathways. This test provides a convenient way to analyze and interpret network topology with Metabolic Pathway Analysis. The algebraic test is also useful for improving the efficiency of computing elementary modes in very large metabolic networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Algebraic Properties of Extreme Pathways in Metabolic Networks

We give a concise development of some of the major algebraic properties of extreme pathways (pathways that cannot be the result of combining other pathways) of metabolic networks, contrasting them to those of elementary flux modes (pathways involving a minimal set of reactions). In particular, we show that an extreme pathway can be recognized by a rank test as simple as the existing rank test f...

متن کامل

Large-scale computation of elementary flux modes with bit pattern trees

MOTIVATION Elementary flux modes (EFMs)--non-decomposable minimal pathways--are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extre...

متن کامل

Modeling Signal Transduction in Enzyme Cascades with the Concept of Elementary Flux Modes

Concepts such as elementary flux modes (EFMs) and extreme pathways are useful tools in the detection of non-decomposable routes (metabolic pathways) in biochemical networks. These methods are based on the fact that metabolic networks obey a mass balance condition. In signal transduction networks, that condition is of minor importance because it is the flow of information that matters. Neverthel...

متن کامل

Decomposition of kinetically feasible metabolic flux distributions onto elementary modes

As genome-scale metabolic networks are being reconstructed with increasing accuracy, new methods are needed to understand the systemic biochemical properties of these large networks. The behaviour of complex systems of interacting components cannot be comprehended by the sole characterization of their individual components or pair-wise relations, because new properties emerge from the interacti...

متن کامل

FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps

MOTIVATION The analysis of structure, pathways and flux distributions in metabolic networks has become an important approach for understanding the functionality of metabolic systems. The need of a user-friendly platform for stoichiometric modeling of metabolic networks in silico is evident. RESULTS The FluxAnalyzer is a package for MATLAB and facilitates integrated pathway and flux analysis f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008